53 resultados para SURFACE PROTEIN

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wolbachia are bacteria present within the tissues of most filarial nematodes. Filarial nematode survival is known to be affected by immune responses generated during filarial nematode infection and immune responses to Wolbachia can be found in different species harbouring filarial nematode infections, including humans. Using the rodent filarial model Litomosoides sigmodontis, we show that pre-exposure to wolbachia surface protein in a Th1 context (but not in a Th2-context) enhances worm survival on subsequent challenge. This study suggests that despite abundant evidence that pro-inflammatory reactions to the endosymbiont have detrimental effects on the both the nematode and mammalian host, they may under some circumstances be beneficial to the nematode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resistance to human skin innate defenses is crucial for survival and carriage of Staphylococcus aureus, a common cutaneous pathogen and nasal colonizer. Free fatty acids extracted from human skin sebum possess potent antimicrobial activity against S. aureus. The mechanisms by which S. aureus overcomes this host defense during colonization remain unknown. Here, we show that S. aureus IsdA, a surface protein produced in response to the host, decreases bacterial cellular hydrophobicity rendering them resistant to bactericidal human skin fatty acids and peptides. IsdA is required for survival of S. aureus on live human skin. Reciprocally, skin fatty acids prevent the production of virulence determinants and the induction of antibiotic resistance in S. aureus and other Gram-positive pathogens. A purified human skin fatty acid was effective in treating systemic and topical infections of S. aureus suggesting that our natural defense mechanisms can be exploited to combat drug-resistant pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differences in the expression of cell surface proteins between a normal prostate epithelial (1542-NP2TX) and a prostate cancer cell line (1542-CP3TX) derived from the same patient were investigated. A combination of affinity chromatographic purification of biotin-tagged surface proteins with mass spectrometry analysis identified 26 integral membrane proteins and 14 peripheral surface proteins. The findings confirm earlier reports of altered expression in prostate cancer for several cell surface proteins, including ALCAM/CD166, the Ephrin type A receptor, EGFR and the prostaglandin F2 receptor regulatory protein. In addition, several novel findings of differential expression were made, including the voltage-dependent anion selective channel proteins Porin 1 and 2, ecto-5'-nucleotidase (CD73) and Scavenger receptor B1. Cell surface protein expression changed both qualitatively and quantitatively when the cells were grown in the presence of either or both interferon INFalpha and INFgamma. Costimulation with type I and II interferons had additive or synergistic effects on the membrane density of several, mainly peripherally attached surface proteins. Concerted upregulation of surface exposed antigens may be of benefit in immuno-adjuvant-based treatment of interferon-responsive prostate cancer. In conclusion, this study demonstrates that differences in the expression of membrane proteins between normal and prostate cancer cells are reproducibly detectable following vectorial labelling with biotin, and that detailed analysis of extracellular-induced surface changes can be achieved by combining surface-specific labelling with high-resolution two-dimensional gel electrophoresis and mass spectrometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differences in the expression of cell surface proteins between a normal prostate epithelial (1542-NP2TX) and a prostate cancer cell line (1542-CP3TX) derived from the same patient were investigated. A combination of affinity chromatographic purification of biotin-tagged surface proteins with mass spectrometry analysis identified 26 integral membrane proteins and 14 peripheral surface proteins. The findings confirm earlier reports of altered expression in prostate cancer for several cell surface proteins, including ALCAM/CD166, the Ephrin type A receptor, EGFR and the prostaglandin F2 receptor regulatory protein. In addition, several novel findings of differential expression were made, including the voltage-dependent anion selective channel proteins Porin 1 and 2, ecto-5'-nucleotidase (CD73) and Scavenger receptor B1. Cell surface protein expression changed both qualitatively and quantitatively when the cells were grown in the presence of either or both interferon INF alpha and INF gamma. Costimulation with type I and II interferons had additive or synergistic effects on the membrane density of several, mainly peripherally attached surface proteins. Concerted upregulation of surface exposed antigens may be of benefit in immuno-adjuvant-based treatment of interferon-responsive prostate cancer. In conclusion, this study demonstrates that differences in the expression of membrane proteins between normal and prostate cancer cells are reproducibly detectable following vectorial labelling with biotin, and that detailed analysis of extracellular-induced surface changes can be achieved by combining surface-specific labelling with high-resolution two-dimensional gel electrophoresis and mass spectrometry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability of Staphylococcus aureus to colonize the human nares is a crucial prerequisite for disease. IsdA is a major S. aureus surface protein that is expressed during human infection and required for nasal colonization and survival on human skin. In this work, we show that IsdA binds to involucrin, loricrin, and cytokeratin K10, proteins that are present in the cornified envelope of human desquamated epithelial cells. To measure the forces and dynamics of the interaction between IsdA and loricrin (the most abundant protein of the cornified envelope), single-molecule force spectroscopy was used, demonstrating high-specificity binding. IsdA acts as a cellular adhesin to the human ligands, promoting whole-cell binding to immobilized proteins, even in the absence of other S. aureus components (as shown by heterologous expression in Lactococcus lactis). Inhibition experiments revealed the binding of the human ligands to the same IsdA region. This region was mapped to the NEAT domain of IsdA. The NEAT domain also was found to be required for S. aureus whole-cell binding to the ligands as well as to human nasal cells. Thus, IsdA is an important adhesin to human ligands, which predominate in its primary ecological niche.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conformational changes within the human immunodeficiency virus-1 (HIV-1) surface glycoprotein gp120 result from binding to the lymphocyte surface receptors and trigger gp41-mediated virus/cell membrane fusion. The triggering of fusion requires cleavage of two of the nine disulfide bonds of gp120 by a cell-surface protein disulfide-isomerase (PDI). Soluble glycosaminoglycans such as heparin and heparan sulfate bind gp120 via V3 and, possibly, a CD4-induced domain. They exert anti-HIV activity by interfering with the HIV envelope glycoprotein ( Env)/cell-surface interaction. Env also binds cell-surface glycosaminoglycans. Here, using surface plasmon resonance, we observed an inverse relationship between heparin binding by gp120 and its thiol content. In vitro, and in conditions in which gp120 could bind CD4, heparin and heparan sulfate reduced PDI-mediated gp120 reduction by approximately 80%. Interaction of Env with the surface of lymphocytes treated using sodium chlorate, an inhibitor of glycosaminoglycan synthesis, led to gp120 reduction. We conclude that besides their capacity to block Env/cell interaction, soluble glycosaminoglycans can effect anti-HIV activity via interference with PDI- mediated gp120 reduction. In contrast, their presence at the cell surface is dispensable for Env reduction during the course of interaction with the lymphocyte surface. This work suggests that the reduction of exofacial proteins in various diseases can be inhibited by compounds targeting the substrates ( not by targeting PDI, as is usually done), and that glycosaminoglycans that primarily protect proteins by preserving them from proteolysis also have a role in preventing reduction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is growing evidence that a number of oral Treponema species, in particular Treponema denticola, are associated with the progression of human periodontal disease. The major sheath (or surface) protein (Msp) of T. denticola is implicated in adhesion of bacteria to host cells and tissue proteins and is likely to be an important virulence factor. However, the binding regions of the Msp are not known. We have purified from Escherichia coli recombinant Msp (rMsp) polypeptides corresponding to the following: full-length Msp (rMsp) minus 13 N-terminal amino acid (aa) residues, an amino-terminal fragment (rN-Msp, 189 aa residues), a 57-aa residue segment from the central region (rV-Msp), and a C-terminal fragment (rC-Msp, 272 aa residues). rMsp (530 aa residues) bound to immobilized fibronectin, keratin, laminin, collagen type 1, fibrinogen, hyaluronic acid, and heparin. The N- and V-region polypeptides, but not rC-Msp, also bound to these substrates. Binding of rMsp to fibronectin was targeted to the N-terminal heparin I/fibrin I domain. Antibodies to the N-region or V-region polypeptides, but not antibodies to the rC-Msp fragment, blocked adhesion of T. denticola ATCC 35405 cells to a range of host protein molecules. These results suggest that the N-terminal half of Msp carries epitopes that are surface exposed and that are involved in mediating adhesion. Binding of rMsp onto the cell surface of low-level fibronectin-binding Treponema isolates conferred a 10-fold increase in fibronectin binding. This confirms that Msp functions autonomously as an adhesin and raises the possibility that phenotypic complementation of virulence functions might occur within mixed populations of Treponema species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An important facet of the Staphylococcus aureus host-pathogen interaction is the ability of the invading bacterium to evade host innate defenses, particularly the cocktail of host antimicrobial peptides. In this work, we showed that IsdA, a surface protein of S. aureus which is required for nasal colonization, binds to lactoferrin, the most abundant antistaphylococcal polypeptide in human nasal secretions. The presence of IsdA on the surface of S. aureus confers resistance to killing by lactoferrin. In addition, the bactericidal activity of lactoferrin was inhibited by addition of phenylmethylsulfonyl fluoride, implicating the serine protease activity of lactoferrin in the killing of S. aureus. Recombinant IsdA was a competitive inhibitor of lactoferrin protease activity. Reciprocally, antibody reactive to IsdA enhanced killing of S. aureus. Thus, IsdA can protect S. aureus against lactoferrin and acts as a protease inhibitor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Figs and fig wasps form a peculiar closed community in which the Ficus tree provides a compact syconium (inflorescence) habitat for the lives of a complex assemblage of Chalcidoid insects. These diverse fig wasp species have intimate ecological relationships within the closed world of the fig syconia. Previous surveys of Wolbachia, maternally inherited endosymbiotic bacteria that infect vast numbers of arthropod hosts, showed that fig wasps have some of the highest known incidences of Wolbachia amongst all insects. We ask whether the evolutionary patterns of Wolbachia sequences in this closed syconium community are different from those in the outside world. In the present study, we sampled all 17 fig wasp species living on Ficus benjamina, covering 4 families, 6 subfamilies, and 8 genera of wasps. We made a thorough survey of Wolbachia infection patterns and studied evolutionary patterns in wsp (Wolbachia Surface Protein) sequences. We find evidence for high infection incidences, frequent recombination between Wolbachia strains, and considerable horizontal transfer, suggesting rapid evolution of Wolbachia sequences within the syconium community. Though the fig wasps have relatively limited contact with outside world, Wolbachia may be introduced to the syconium community via horizontal transmission by fig wasps species that have winged males and visit the syconia earlier.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A methodology for discovering the mechanisms and dynamics of protein clustering on solid surfaces is presented. In situ atomic force microscopy images are quantitatively compared to Monte Carlo simulations using cluster statistics to differentiate various models. We study lysozyme adsorption on mica as a model system and find that all surface-supported clusters are mobile, not just the monomers, with diffusion constant inversely related to cluster size. The surface monomer diffusion constant is measured to be D1∼9×10-16  cm2 s-1, such a low value being difficult to measure using other techniques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Platelets are small blood cells vital for hemostasis. Following vascular damage, platelets adhere to collagens and activate, forming a thrombus that plugs the wound and prevents blood loss. Stimulation of the platelet collagen receptor glycoprotein VI (GPVI) allows recruitment of proteins to receptor-proximal signaling complexes on the inner-leaflet of the plasma membrane. These proteins are often present at low concentrations; therefore, signaling-complex characterization using mass spectrometry is limited due to high sample complexity. We describe a method that facilitates detection of signaling proteins concentrated on membranes. Peripheral membrane proteins (reversibly associated with membranes) were eluted from human platelets with alkaline sodium carbonate. Liquid-phase isoelectric focusing and gel electrophoresis were used to identify proteins that changed in levels on membranes from GPVI-stimulated platelets. Immunoblot analysis verified protein recruitment to platelet membranes and subsequent protein phosphorylation was preserved. Hsp47, a collagen binding protein, was among the proteins identified and found to be exposed on the surface of GPVI-activated platelets. Inhibition of Hsp47 abolished platelet aggregation in response to collagen, while only partially reducing aggregation in response to other platelet agonists. We propose that Hsp47 may therefore play a role in hemostasis and thrombosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite its relevance to a wide range of technological and fundamental areas, a quantitative understanding of protein surface clustering dynamics is often lacking. In inorganic crystal growth, surface clustering of adatoms is well described by diffusion-aggregation models. In such models, the statistical properties of the aggregate arrays often reveal the molecular scale aggregation processes. We investigate the potential of these theories to reveal hitherto hidden facets of protein clustering by carrying out concomitant observations of lysozyme adsorption onto mica surfaces, using atomic force microscopy. and Monte Carlo simulations of cluster nucleation and growth. We find that lysozyme clusters diffuse across the substrate at a rate that varies inversely with size. This result suggests which molecular scale mechanisms are responsible for the mobility of the proteins on the substrate. In addition the surface diffusion coefficient of the monomer can also be extracted from the comparison between experiments and simulations. While concentrating on a model system of lysozyme-on-mica, this 'proof of concept' study successfully demonstrates the potential of our approach to understand and influence more biomedically applicable protein-substrate couples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a recent interest to use inorganic-based magnetic nanoparticles as a vehicle to carry biomolecules for various biophysical applications, but direct attachment of the molecules is known to alter their conformation leading to attenuation in activity. In addition, surface immobilization has been limited to monolayer coverage. It is shown that alternate depositions of negatively charged protein molecules, typically bovine serum albumin (BSA) with a positively charged aminocarbohydrate template such as glycol chitosan (GC) on magnetic iron oxide nanoparticle surface as a colloid, are carried out under pH 7.4. Circular dichroism (CD) clearly reveals that the secondary structure of the entrapped BSA sequential depositions in this manner remains totally unaltered which is in sharp contrast to previous attempts. Probing the binding properties of the entrapped BSA using small molecules (Site I and Site II drug compounds) confirms for the first time the full retention of its biological activity as compared with native BSA, which also implies the ready accessibility of the entrapped protein molecules through the porous overlayers. This work clearly suggests a new method to immobilize and store protein molecules beyond monolayer adsorption on a magnetic nanoparticle surface without much structural alteration. This may find applications in magnetic recoverable enzymes or protein delivery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The L-glutamate transporter GLT-1 is an abundant CNS membrane protein of the excitatory amino acid transporter (EAAT) family which controls extracellular L-glutamate levels and is important in limiting excitotoxic neuronal death. Using RT-PCR, we have determined that four mRNAs encoding GLT-1 exist in mouse brain, with the potential to encode four GLT-1 isoforms that differ in their N- and C-termini. We expressed all four isoforms (termed MAST-KREK, MPK-KREK, MAST-DIETCI and MPK-DIETCI according to amino acid sequence) in a range of cell lines and primary astrocytes and show that each isoform can reach the cell surface. In transfected HEK-293 or COS-7 cells, all four isoforms support high-affinity sodium-dependent L-glutamate uptake with identical pharmacological and kinetic properties. Inserting a viral epitope (V5, HA or FLAG) into the second extracellular domain of each isoform allowed co-immunoprecipitation and tr-FRET studies using transfected HEK-293 cells. Here we show for the first time that each of the four isoforms are able to combine to form homomeric and heteromeric assemblies, each of which are expressed at the cell surface of primary astrocytes. After activation of protein kinase C by phorbol ester, V5-tagged GLT-1 is rapidly removed from the cell surface of HEK-293 cells and degraded. This study provides direct biochemical evidence for oligomeric assembly of GLT-1 and reports the development of novel tools to provide insight into the trafficking of GLT-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the use of a laminin coated compressed collagen gel containing corneal fibroblasts (keratocytes) as a novel scaffold to support the growth of corneal limbal epithelial stem cells. The growth of limbal epithelial cells was compared between compressed collagen gel and a clinically proven conventional substrate, denuded amniotic membrane. Following compression of the collagen gel, encapsulated keratocytes remained viable and scanning electron microscopy showed that fibres within the compressed gel were dense, homogeneous and similar in structure to those within denuded amniotic membrane. Limbal epithelial cells were successfully expanded upon the compressed collagen resulting in stratified layers of cells containing desmosome and hemidesmosome structures. The resulting corneal constructs of both the groups shared a high degree of transparency, cell morphology and cell stratification. Similar protein expression profiles for cytokeratin 3 and cytokeratin 14 and no significant difference in cytokeratin 12 mRNA expression levels by real time PCR were also observed. This study provides the first line of evidence that a laminin coated compressed collagen gel containing keratocytes can adequately support limbal epithelial cell expansion, stratification and differentiation to a degree that is comparable to the leading conventional scaffold, denuded amniotic membrane.